Contents lists available at SciVerse [ScienceDirect](http://www.sciencedirect.com/science/journal/13873806)

International Journal of Mass Spectrometry

jour nal homepage: www.elsevier.com/locate/ijms

Structures and energetics of SiGeH $_{z}^{\mathrm{0, +1}}$, Ge $_{2} \mathrm{H}_{z}^{\mathrm{0, +1}}$, and Si $_{2} \mathrm{H}_{z}^{\mathrm{0, +1}}$: A systematic theoretical study

Liming Wang^{a,∗}, Jingsong Zhang ^b

a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China ^b Department of Chemistry and Air Pollution Research Center, University of California, Riverside, CA 92521, USA

a r t i c l e i n f o

Article history: Received 8 September 2011 Received in revised form 9 December 2011 Accepted 9 December 2011 Available online 19 December 2011

Keywords: Silicon–germanium hydride Germanium hydride Silicon hydride Appearance energy Ionization energy

A B S T R A C T

The structural and energetic information of $Si_xGe_vH_z$ and ions is crucial in understanding the deposition processes in producing Si_xGe_{1−x} semiconductor materials. This work presents theoretical studies on the structures and energetics of the simplest SiGe-hydrides and cations, SiGeH_z0,+1, as well as Ge₂H_z^{0,+1} and $Si₂H₂^{0,+1}$ for comparison. The structures are obtained at DFT-B3LYP and MP2 levels with 6-31+G(2df,p) basis set, and the electronic energies at Gaussian-4 (G4) level. The G4 energies are used to calculate the relative energies, bond dissociation energies, the adiabatic ionization energies (IE_as) of neutral species, and the appearance energies (AEs) of cation fragments from SiGeH $_6$, Ge₂H $_6$, and Si₂H $_6$. The relative energies and IE_as for Si₂H_z and the total atomization energies of Si₂H_z and Ge₂H_z are compared and are in close agreement with previous theoretical and experimental studies, while the agreements on the AEs of $Si₂H_z$ ⁺ from $Si₂H₆$ are less pronounced. The calculations suggest that the kinetic shift effect and potential barriers should be taken into account when using AEs for thermodynamic information of $\rm{Si_2H_2^{*}}$, $\rm{Ge_2H_2^{*}}$ and $SiGeH₂⁺$.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Silicon–germanium alloys, Si_xGe_{1-x} , are of interest in microelectronic industry, mainly because of the possibility of band-gap tuning and high-speed electronic devices based on the Si/Si_xGe_{1-x} heterostructures [\[1\].](#page-6-0) The microcrystalline SiGe (μ c-SiGe) is also proposed as a substitute for thick μ c-Si layer in solar cell systems to absorb sufficient light with thinner material and to allow more efficient use of longer wavelength light [\[2\].](#page-6-0) The main technique in growing the SiGe thin film is chemical vapor deposition (CVD), such as plasma-enhanced CVD (PECVD) from mixture of SiH_4 or $Si₂H₆$, GeH₄, and H₂ [2-4], UV-laser assisted CVD (LCVD) [\[5\],](#page-6-0) reactive thermal CVD from mixture of $Si₂H₆$ and GeF₄ over heated substrates [\[6\],](#page-6-0) low-pressure CVD over heated quartz tube, and gas-source molecular beam epitaxy using $Si₂H₆$ and GeH₄ [\[7\]](#page-6-0) or H₃SiGeH₃ and Ge(SiH_3)₄ [\[8\].](#page-6-0) In PECVD and LCVD, the precursors are fragmented in the gas phase to produce large amount of free radicals [\[9\],](#page-6-0) including the silicon hydrides (Si_xH_z), germanium hydrides (Ge_yH_z), and hybrid silicon–germanium hydrides ($Si_xGe_vH_z$), and their cations in PECVD. The gas-phase thermodynamic properties, structures, and energetics of these hydrides and their cations would be helpful in understanding the PECVD and LCVD processes.

There have been a wealth of studies on the structures and energetics of Si_xH_z and Ge_yH_z hydrides, while the knowledge on hybrid $Si_{x}Ge_{y}H_{z}$ hydrides is considerably scarce. Experimental studies on $Si_{x}Ge_{y}H_{z}$ were limited to the enthalpy of formation of SiGeH₆ [\[10,11\],](#page-6-0) the atomization energies of SiGe [\[12,13\]](#page-6-0) and Si₂Ge, SiGe₂ and Si₂Ge₂ [\[13\].](#page-6-0) However, the obtained $\Delta_f H^\circ$ (SiGeH₆) differed by as much as 85 kJ/mol. Theoretical studies on the thermodynamic properties of SiGe hydrides are also limited to SiGe [\[14–17\]](#page-6-0) and propane-/butane-like hydrides [\[18\],](#page-6-0) in contrast to the systematic studies on silicon hydrides [\[19–24\]](#page-6-0) and germanium hydrides [\[25\].](#page-6-0) Theoretical studies on $SiGeH₂$ and $SiGeH₄$ [\[26–31\]](#page-6-0) have focused on the non-classical structures similar to those found for $Si₂H_z$ [\[32–36\]](#page-6-0) and Ge_2H_z [\[34–42\].](#page-6-0) Here, we present a systematic theoretical study on the structures and energetics of SiGeH_z^{0,+1}, Si₂H_z^{0,+1}, and $Ge_2H_z^{0,+1}$ (z=0–6), focusing on the relative stability of the isomers, the adiabatic ionization energies, and the energetics for the dissociative photoionization processes from $SiGeH₆$, $Si₂H₆$, and $Ge₂H₆$.

2. Computational details

All molecular orbital and density functional theory (DFT) calculations are carried out by using Gaussian 03 suite of programs [\[43\].](#page-6-0) The geometries are optimized at B3LYP and MP2 levels with basis set 6-31+G(2df,p), which was also used in recent G4(MP2)- 6X model chemistry [\[44\].](#page-7-0) Zero-point energy (ZPE) corrections are

[∗] Corresponding author. Tel.: +86 20 87112900; fax: +86 20 87112906. E-mail address: wanglm@scut.edu.cn (L. Wang).

^{1387-3806/\$} – see front matter © 2011 Elsevier B.V. All rights reserved. doi:[10.1016/j.ijms.2011.12.005](dx.doi.org/10.1016/j.ijms.2011.12.005)

obtained from the B3LYP harmonic frequencies with scale factor of 0.9888, which is obtained by comparing the estimated and the experimental ZPEs for a set of molecules [\[45\].](#page-7-0) Total energies are refined at G4 level with the effective electron correlation of CCSD(T,Full)/G3LargeXP + HFlimit [\[46\].](#page-7-0) The electronic energies of all species are given in Tables S1 (for isomers) and S2 (for transition states) of Supporting Information (SI).

3. Results and discussion

3.1. Structures and energetics

Because of the capability of forming non-classical bonds between H and Si/Ge, multiple structures are possible for Si $_2\rm{H}_z{}^{0,+1},$ Ge₂H_z^{0,+1}, and SiGeH_z^{0,+1} (z = 1-6). The miscellaneous structures for $\rm{Si}_{2}H_{z}^{0,+1}$ from previous studies [\[32–36\]](#page-6-0) are systematically examined here; while the structures of $Ge_2H_z^{0,+1}$ and SiGeH_z^{0,+1} is searched by replacing Si with Ge-atom to the $\rm{Si}_2\rm{H}_{z}^{\rm{0, +1}}$ structures. The geometries of the most stable isomers of $\rm{Si_2H_2^{0,+1}}$, $\rm{Ge_2H_2^{0,+1}}$, and SiGeH $z^{0,+1}$ are shown in [Fig.](#page-2-0) 1 and others in [SI](#page-6-0) [\(Figs.](#page-6-0) [S1–S5\).](#page-6-0)

The geometries are optimized at B3LYP and MP2 levels with 6-31+G(2df,p) basis sets. The geometries from B3LYP and MP2 agree with each other, while B3LYP predicts slightly longer bond lengths than MP2 for most of the cases, e.g. the B3LYP r(Si–Ge) in SiGeH₆ is 2.391 Å, being longer than the MP2 value of 2.370 Å and the experimental value of 2.364 Å $[47]$. Yet the energy differences between the B3LYP and MP2 geometries are rather small, being usually within 2 kJ/mol at G4 level, e.g. 0.8, 0.5, and 1.0 kJ/mol for SiGeH $_6$, Si₂H $_6$, and Ge₂H $_6$, respectively ([Table](#page-6-0) S1). For neutral hydrides, differences larger than 2 kJ/mol are found for H_2 Si = SiH, H₂Ge = SiH, and Si(H)Ge (²A'), due to the large structure difference between B3LYP and MP2. For H_2SisH and H_2GeSiH , B3LYP predicts non-planar while MP2 predicts planar structures, with the MP2 structures being lower in energy by 5.0 and 5.7 kJ/mol. Further geometry refinement at QCSID/6-31+G(2df,p) level confirms the planar structures for H_2SisH and H_2GeSiH . Previous CCSD(T)/cc $pVTZ$ calculation also predicted a planar structure for $H₂SiSiH$ [\[32\].](#page-6-0) For these three species, the G4 energy differences are less than 0.2 kJ/mol between QCISD and MP2 structures. Therefore, G4//MP2 energies will be adopted in the following discussion.

The G4//MP2 energies are used to calculate the relative energetics for various processes including ionization, dissociation, dissociative ionization, and reactions between SiGeH $_{\rm z}$ ^{0,+1}, Si $_{\rm 2}$ H $_{\rm z}$ ^{0,+1}, and $Ge_2H_z^{0,+1}$. The adiabatic ionization energies (IE_a) for the most stable isomers are listed in [Table](#page-3-0) 1, and the appearance energies (AE) of cation fragments in [Table](#page-3-0) 2, while the complete dataset in Tables [S3–S6,](#page-6-0) along with the previous theoretical and experimental values.

3.2. $Si₂H_z^{0,+1}$

For $Si₂H_z$, current G4 IE_as and AEs agree excellently with the previous G2 predictions [\[21\]](#page-6-0) within 0.04 eV, except that the G4 IEas for H₂SiSiH and H₃SiSi are higher than the G2 ones by 0.08-0.17 eV. For H2SiSiH, this is because that MP2(Full)/6-31G(d) in G2 predicted a non-planar structure while current MP2/6-31+G(2df,p) predicts a planar one. For H_3 SiSi, the post-HF calculations in previous G2 suffered from strong spin contamination with $\langle S^2 \rangle$ ∼0.95, while the spin contamination in current G4 is negligible with $\langle S^2 \rangle$ ~ 0.76. Therefore, the G2 electronic energies for H_2S iSiH and H_3S iSi were over-estimated due to incorrect structure and spin contamination, respectively, leading to the underestimated adiabatic IE.

Current G4 total atomization energies (TAEs) also agree excellently with the recent high-level CCSD(T)-DKH/CBS calculations for $Si₂H₂$ and $Si₂H₄$ within 4 kJ/mol [\[48,49\],](#page-7-0) and with the early G2 predictions [\[21\]](#page-6-0) within 6 kJ/mol for all the species except for $Si₂$ and H_2 SiSiH. For H_2 SiSiH, the G2 TAE is lower than current G4//MP2 value by ∼11 kJ/mol, again due to fact that MP2(Full)/6-31G(d) in G2 predicted a non-planar structure.

A disagreement is found on the relative stability of H₃SiSi [between](#page-6-0) current G4 and previous approximate
CCSDT/cc-pVTZ $(E_{CCBVTT} \approx E_{CCSD(T)/(CC-D)VT} + \Delta E_T$ with $(E_{\text{CCSDT/cc-pVTZ}} \approx E_{\text{CCSD(T)/cc-pVTZ}} + \Delta E_{\text{T}}$ with $\Delta E_T = E_{\text{CCSDT/CC-pVDZ}} - E_{\text{CCSD(T)/CC-pVDZ}}$ calculations by Sari et al. [\[32\],](#page-6-0) who located five structures for $Si₂H₃$ as $H₂Si(H)Si$, $H₂SiSiH$, H₃SiSi, and two HSi(H)SiH isomers (C_2 and C_1) with relative energies of 0.0, 0.96, 13.2, 17.6, and 46.0 kJ/mol. The relative G4 energies are 0.0, 0.8, 2.4, 17.2, and 47.8 kJ/mol. At G4 level, the energy of H_3 SiSi is close to those of H_2 Si(H)Si and H_2 SiSiH, agreeing with the earlier theoretical predictions (MRCI, G2, and CCSD(T)) [\[20,21,50\]](#page-6-0) but being contradictory to the CCSDT/cc-pVTZ prediction. The discrepancy on H_3 SiSi is probably due to the unreasonably large $\Delta E_{\rm T}$ of 8.8 kJ/mol for H₃SiSi by Sari et al., if compared to $\Delta E_{\rm T}$ of less than 0.6 kJ/mol for other isomers in the calculations. We have re-examined and found $\Delta E_{\rm T}$ of 0.3 kJ/mol for H₃SiSi using NWChem 4.7 [\[51\],](#page-7-0) and the unreasonably large $\Delta E_{\rm T}$ for H₃SiSi by Sari et al. may be a mistake. On the other hand, only H_2SisH has been observed and identified experimentally from microwave and infrared spectroscopy studies [\[32,50\].](#page-6-0)

Ruscic and Berkowitz [\[52,53\]](#page-7-0) have measured the IE_as of $Si₂H_z$ $(z=2-6)$ using photoionization mass spectrometry method, where $Si₂H_z$ (z = 2–5) were generated by reacting $Si₂H₆$ with F-atom. The observed IE_as of 8.09 ± 0.03 , 7.60 ± 0.05 , and 9.74 ± 0.02 eV for $z = 4$, 5, and 6 are supported by G4 predictions of 8.138 (for H_2SiSiH_2), 7.709, and 9.656 eV, respectively; while the observed value of \le 7.59 eV for Si₂H₃ cannot be certainly assigned to ionizations of $H₂$ SiSiH, $H₂$ Si(H)Si, or $H₃$ SiSi. Ruscic and Berkowitz have assigned the observation to ionization $[H_3SiSi]^+ \leftarrow H_3SiSi$ according to the G2 IE_a(H₃SiSi) of 7.57 eV [\[21\],](#page-6-0) which is however much lower than G4 prediction of 7.691 eV as mentioned above. Current G4 calculations suggest that the observed $IE_a(Si_2H_3)$ arise more likely from the ionization from $[H_2Si(H)H]^+ \leftarrow H_2Si(H)H$ (7.579 eV by G4) or $[H₂Si(H)Si]⁺ \leftarrow H₃SiSi$ (7.563 eV by G4) ([Table](#page-6-0) S3). The observed $IE_a(Si_2H_2)$ of 8.20^{+0.01} eV may arise from ionizations of Si(H)₂Si $(8.262 \text{ eV}$ by G4) or HSi (H) Si $(8.231 \text{ eV}$ by G4), albeit HSi (H) Si is much less stable than Si(H)2Si by ∼38 kJ/mol.

Ion-complex structures are found as $Si₂H_{z-2}⁺-H₂$ for $Si₂H_z⁺$ $(z=4-6)$ (Figs. [S1–S5\),](#page-6-0) where the $Si₂H₂⁺$ moiety can be [H₂SiSi]⁺ or [HSiSiH]⁺, Si₂H₃⁺ be [H₂Si(H)Si]⁺ or [H₂SiSiH]⁺, and Si₂H₄⁺ be $[H₂SiSiH₂]$ ⁺ or $[H₃SiSiH]$ ⁺. These ion-complex structures are much higher in energy than their 'normal' or H-bridged structures, and may serve as intermediates in H_2 -eliminations from $Si_2H_z^+$ cations.

3.3. SiGeH_z^{0,+1} and Ge₂H_z^{0,+1}

Structures of SiGeH_z^{0,+1} and Ge₂H_z^{0,+1} are searched by replacing Si-atom in $Si₂H_z^{0,+1}$ with Ge-atom. Generally, geometries and electronic structures of SiGeH_z^{0,+1} and Ge₂H_z^{0,+1} are similar to their $Si₂H_z^{0,+1}$ counterparts (Figs. [S1–S5\).](#page-6-0) The G4 IE_as and AEs are listed in [Tables](#page-6-0) 1 and 2 and S3-S5. For $Ge₂H_z$, the G4 total atomization energies agree with the previous CCSD(T)/CBS predictions with 7 kJ/mol [\[25\].](#page-6-0) Although there have been some previous studies on the structures and energetics of $SiGe^{0,+1}$ and $Ge_2^{0,+1}$ at various levels of theory [\[15–17,54,55\],](#page-6-0) current work presents a systematic study on $SiGeH_z^{0,+1}$ and $Ge₂H_z^{0,+1}$. It is not surprised to find that $IE_a(Si_2H_z) > IE_a(SiGeH_z) > IE_a(Ge_2H_z)$ for similar structures.

Experimental studies on Ge_2H_z and SiGeH_z are rather scarce. A near threshold photoionization study [\[56\]](#page-7-0) found $IE_a(Ge_2)$ in the range of 7.58–7.76 eV, which is supported by current G4 prediction of 7.662 eV, while other theoretical studies have predicted high value of 7.89 eV at B3LYP/6-311+G(3df) level [\[57\]](#page-7-0) or low value

Fig. 1. The most stable structures for SiGeHz^{0,+1}, Ge₂Hz^{0,+1}, and Si₂Hz^{0,+1} at B3LYP, MP2 (in italics), and QCISD (with underline) levels of theory with 6-31+G(2df,p) basis sets. Parameters for cations are in round parenthesis.

of 7.45 eV at $CCSD(T)/SDB-AVTZ$ level [\[17\].](#page-6-0) The G4 $IE_a(SiGe)$ of 7.785 eV is also much higher than MRCI/AVQZ value of 7.514 eV [\[54\]](#page-7-0) and $CCSD(T)/SDB-AVTZ$ value of 7.63 eV [\[17\].](#page-6-0)

Bond dissociation energies (D_0) of SiGe and Ge₂ have been measured experimentally. $D_0(Ge_2) = 260.7 \pm 6.8$ kJ/mol has been obtained from the evaluation of more than 10 experimental mea-surements [\[58\],](#page-7-0) and $D_0(SiGe)$ of 297 ± 21 and 292.7 ± 8.6 kJ/mol have been obtained from mass spectroscopic studies [\[12,13\].](#page-6-0) The experimental $D_0(Ge_2)$ is supported by CCSD(T)/(SDB-)AVTZ of 261.4 kJ/mol[\[17\]](#page-6-0) and present G4 of 258.2 kJ/mol while being higher than previous G2 prediction of 246.9 kJ/mol [\[55\].](#page-7-0) For SiGe, present G4 D_0 of 284.7 kJ/mol ($D_{298 \text{ K}}$ of 290.1 kJ/mol) is at the lower ends of both experimental uncertainty ranges, and also agrees with previous B3LYP prediction of 280 kJ/mol [\[15\],](#page-6-0) CCS(T)/(SDB-)AVTZ of 278.5 kJ/mol [\[17\],](#page-6-0) and MRCI/AVQZ of 280.2 kJ/mol [\[54\],](#page-7-0) while all being much lower than another prediction of 304.9 kJ/mol at CCSD(T)/CBS level with core-valence and relativistic corrections [\[16\].](#page-6-0)

Table 1

Adiabatic ionization energies for the most stable $Si₂H_z$, Ge₂H_z, and SiGeH_z isomers at G4 level (all in eV).

^a From mass-selected mass spectrometry [\[61\].](#page-7-0)

b Near threshold photoionization [\[56\].](#page-7-0)

^c Photoionization mass spectrometry (values in parenthesis are the probable value) [\[52,53\].](#page-7-0)

 d CCSD(T)/AVTZ [\[17\].](#page-6-0)

^e CCSD(T)/CBS [\[62\].](#page-7-0)

^f G2 [\[21\].](#page-6-0)

^g B3LYP/6-311+G(3df) [\[57\].](#page-7-0)

Table 2

Appearance energies of cation fragments from SiGeH₆, Si₂H_{4,5,6}, and Ge₂H₆ at G4 level (all in eV).

a Photoionization mass spectrometry (values in parenthesis are the probable value) [\[52,53\].](#page-7-0)

^b G2 [\[21\].](#page-6-0)

Because σ (Si-H) bonds are stronger than σ (Ge-H) bonds, certain H-bridged neutral and cation structures similar to $\rm{Si_{2}H_{z}}^{0, +1}$ cannot be located at B3LYP or MP2 level for $SiGeH_z^{0,+1}$ since they tend to form 'normal' $\sigma(Si-H)$ bonds, e.g., optimizations of $H_2Si(H)$ GeH and $[H_2Si(H)$ GeH]⁺ lead to H_3SiGeH and $[H_3SiGeH]$ ⁺. The relative stability of SiGeH $_{z}$ ^{0,+1} is nearly in line with the

number of 'normal' $\sigma(Si-H)$ bonds for $z=3$ to 5, i.e. the most stable SiGeH_z^{0,+1} isomers are Si(H)Ge (²A'') and [Si(H)Ge]⁺ (³A'') for $z = 1$, Si(H)₂Ge and [Si(H)₂Ge]⁺-[H₂SiGe]⁺ for $z = 2$, H₃SiGe $(^{2}A'')$ and $[Si(H)_{3}Ge]^{+}$ (C_{3V}, A₁) for z=3, H₃SiGeH (C_S, A') and $[H_2SiGeH_2]^+$ (C_{2V}, ²B₁) for z=4, and H₃SiGeH₂ and $[H_3SiGeH_2]^+$ for $z = 5$.

Being similar to $\rm{Si_2H_2^+}$, ion-complex structures are also found for $Ge_2H_z^+$ and $SiGeH_z^+$ (z=4–6) as [HGeGeH]⁺-H₂, [H₂GeGe]⁺- H_2 , $[H_2Ge(H)Ge]^+$ - H_2 , $[H_3GeGeH]^+$ - H_2 , and $[H_2GeGeH_2]^+$ - H_2 for $Ge_2H_z^+$, and as $[HSiGeH]^+$ -H₂, $[H_2SiGe]^+$ -H₂, $[H_2GeSi]^+$ -H₂, [H₂Si(H)Ge]⁺-H₂, [H₂GeSiH]⁺-H₂, [H₃SiGeH]⁺-H₂, [H₃GeSiH]⁺, $[H_2SiGeH_2]^+$ -H₂, and $[H_2GeSiH_2]^+$ -H₂ for SiGeH_z⁺. These ion complexes are again at much higher energies than their 'normal' or H-bridged isomers ([Table](#page-6-0) S1) and would serve as the intermediates in the H₂-elimination processes from Ge₂H_z⁺ and SiGeH₂⁺.

3.4. Thermal neutrality

Gunn and Kindsvater [\[10\]](#page-6-0) have obtained $\Delta_{\rm r}H^\circ_{\rm 298\,K}$ of -1.6 kJ/mol for reaction Si₂H₆ + Ge₂H₆ \rightarrow 2H₃SiGeH₃ by comparing the heats of decomposition of H_3SiGeH_3 and $Si_2H_6-Ge_2H_6$ mixtures. The value is supported here by G4 value of −0.1 kJ/mol. The nearly thermal neutrality of this reaction can be extended to other $\rm{Si_{2}H_{z}}^{0,+1}$, $\rm{Ge_{2}H_{z}}^{0,+1}$, and $\rm{SiGeH_{z}}^{0,+1}$, e.g.

 $2SiGe^+ \rightarrow Si_2^+ + Ge_2^+, \quad \Delta$ $_{r}H^{\circ}$ _{0K} = -2.3 kJ/mol. H_3 SiGeH₂ + H₃GeSiH₂ \rightarrow Si₂H₅ + Ge₂H₅, $\Delta_{\rm r}H^{\circ}$ _{0K} = –0.2 kJ/mol.

[Table](#page-6-0) S6 lists the enthalpy changes and demonstrates the thermal neutrality for other reactions. The absolute enthalpy changes are all within 4 kJ/mol, except for the two reactions of $[HSi(H)_2GeH]^+$ because the two bridged H-atoms bond preferentially to Si-atom in the cations. As a result of thermal neutrality for both neutral and cationic species, IE_a of SiGeH_z is about the average of the IE_as of the corresponding $Si₂H_z$ and Ge₂H_z [\(Table](#page-3-0) 1), e.g. IE_a(SiGe) (7.785 eV) ~ (IE_a(Si₂) + IE_a(Ge₂))/2 (7.782 eV) by G4. Similar equality for IE_a can also be identified from previous $CCSD(T)/(SDB-)AVTZ$ study with $IE_a(SiGe)$ $(7.63 \text{ eV}) \sim (IE_a(Si_2) + IE_a(Ge_2))/2(7.64 \text{ eV})$ [\[17\],](#page-6-0) albeit the differences on IE_3 between G4 and $CCSD(T)/(SDB-)AVTZ$ are as large as 0.15 eV. The validity of the thermal neutrality and equality in IE_a can provide a criterion for future experimental measurements on the thermodynamic properties and IE_4 s of Ge_2H_7 and SiGeH_z.

The thermal neutrality is rooted on the fact that Si and Ge contribute almost equally when they form σ - and π -bonds by using the NBO (natural bond order) analysis as embedded in Gaussian 03 [\[59\].](#page-7-0) For example, NBO analysis find the following orbital contributions in $Si(H)$ Ge and H_2SiGeH_2 :

 $Si(H)Ge, \sigma(Si - Ge) = 50.0\%$ (Si) + 50.0% (Ge)

 $Si(H)Ge, \pi(Si - Ge) = 49.5\%$ (Si) + 50.5% (Ge)

 H_2 SiGe H_2 , $\sigma(Si - Ge) = 49.3%$ (Si) + 50.7% (Ge)

 H_2 SiGe H_2 , π (Si – Ge) = 50.5% (Si) + 49.5% (Ge)

 $[H_2SiGeH_2]^+, \pi(Si - Ge) = 52.7\% (Si) + 47.3\% (Ge)$

The almost equal contributions from Si and Ge in both neutral hydrides and cations warrants the approximate equality of $IE_a(SiGeH_z)$ ∼ [I $E_a(Si_2H_z)$ + I $E_a(Ge_2H_z)$]/2.

3.5. Photoionization and ion fragmentation of SiGeH₆, Si₂H₆, and Ge_2H_6

One method to measure the bond dissociation energies and enthalpies of formation of free radicals is by photoionization mass spectrometry, measuring the IE_a s and AEs of ion fragments [\[60\].](#page-7-0) This has been used by Ruscic and Berkowitz to measure the enthalpies of formation of $Si₂H_z$ radicals from the dissociative photoionization of $Si₂H₆$ [\[52,53\].](#page-7-0) However, the determinations of IEas and AEs may suffer from the small Franck-Condon factor at the ionization thresholds, thermal shift, and kinetic shift when a "tight" transition state exists for the dissociation channels, etc. The measured AEs may also correspond to the potential barrier when the transition state is at higher energy than the dissociation limit. For example, Ruscic and Berkowitz [\[52,53\]](#page-7-0) assumed routes Si_2H_6^+ \rightarrow Si_2H_5^+ \rightarrow Si_2H_3^+ for Si_2H_3^+ and Si_2H_6^+ \rightarrow Si_2H_4^+ \rightarrow Si_2H_2^+ for $Si₂H₂⁺$. Transition states are expected for the H₂-elimination processes, and the barriers and kinetic shifts may affect the AE measurements for $\rm{Si_2H_3}^+$ and $\rm{Si_2H_2}^+$. The potential energy surfaces (PESs) for decomposition and isomerization reactions of $Si₂H_z⁺$, $Ge_2H_z^+$, and SiGeH_z⁺ (z=4, 5, 6) are explored here at G4 level. Transition states are searched and confirmed using Intrinsic Reaction Coordinate (IRC) method ([Fig.](#page-5-0) 2 and [Table](#page-6-0) S2). Present study attempts to interpreter the experimental observations of $Si₂H_z⁺$ from $Si₂H₆$, $Si₂H₅$, and $Si₂H₄$ [\[52,53\],](#page-7-0) and to predict the appearance of $Ge_2H_z^+$ and SiGeH $_z^+$ from Ge_2H_6 and SiGeH $_6$, for which no previous experimental or theoretical study is available.

[Fig.](#page-6-0) 3 shows the potential energy diagram of $Si₂H₆⁺$. The predicted and measured AEs for $SiH₃⁺$ and $Si₂H_z⁺$ (z=2-5) are in reasonable agreement with the experimental values [\(Table](#page-3-0) 2). For $Si₂H₄$ ⁺, the appearance of $[H₂SiSiH₂]⁺$ from $[H₃SiSiH₃]⁺$ via $[H₂SiSiH₂]+H₂$ has a high barrier which is above $[H₂SiSiH₂]+H₂$, while the barrier from $[H_3SiSiH_3]^+$ to $[H_3SiSiH]^+$ is below $[H_3SiSiH]^+$ + H_2 because of the existence of ion complex $[H_3SiSiH]^+$ -H₂. Therefore, the appearance of [H₃SiSiH]⁺ arises likely from excitation to $[H_3SiSiH_3]^+$, followed by isomerization and decomposition, while the appearance of $[H_2SiSiH_2]^+$ arises likely from the direct ionization to ion complex $[H_2SiSiH_2]^+$ - H_2 with very small Franck-Condon factor. This is consistent with the observation that the signal at the onset for $[H₂SiSiH₂]$ ⁺ is much weaker than that for $[H_3SiSiH]^+$ in the photoionization study [\[53\].](#page-7-0)

The appearances of $Si₂H₃⁺$ and $Si₂H₂⁺$ from $Si₂H₆$ involve consecutive dissociation steps. From the photoionization study, Ruscic and Berkowitz [\[53\]](#page-7-0) obtained $AE(Si_2H_3^+/Si_2H_6)$ of \leq 13.00 \pm 0.04 eV (most probably 12.70 eV) and $AE(Si_2H_2^+/Si_2H_6)$ of $\leq 11.72^{+0.02}_{-0.04}$
(most probably \leq 11.57 \pm 0.03) eV, and assumed $Si_2H_3^+$ and $Si_2H_2^+$ were from the decomposition of $\rm{Si_2H_5}^+$ and $\rm{Si_2H_4}^+$, respectively. G4 finds the thermodynamic limits of 13.061, 12.904, and 12.513 eV for the appearances of $[H_2Si(H)Si]^+$, $[HSi(H)_2Si]^+$, and $[Si(H)_3Si]^+$, respectively, and the transition barriers from either $Si₂H₅⁺$ or $Si₂H₄⁺$ to $Si₂H₃⁺$ are all below the thermodynamic limits. Therefore, the observed $AE(Si₂H₃⁺/Si₂H₆)$ cannot be assigned determinately. Similarly, the G4 thermodynamic limits are 11.331, 11.631, and 11.692 eV for $[Si(H)_2Si]^+$, $[H_2SiSi]^+$, and $[HSi(H)Si]^+$, respectively. The barrier from $[H_3SiSiH]^+$ to $[H_2SiSi]^+$ -H₂ is slightly higher than $[H₂SiSi]⁺ + H₂$ (11.731 eV), while the barrier from $[H₃SiSiH]⁺$ to $[HSi(H)Si]^+$ -H₂ is much higher than the fragments (12.197 eV). Therefore, the $\rm{Si_2H_2^+}$ observed might be $\rm{[H_2SiSi]^+}$ via $\rm{[H_3SiSiH]^+}$.

Ruscic and Berkowitz [\[52,53\]](#page-7-0) also observed $AE(Si₂H₃⁺/Si₂H₅)$ of \leq 9.24 eV, AE(Si₂H₂⁺/Si₂H₄) of \leq 9.62 eV, a weak tail with onset at \sim 8.74 eV for Si₂H₃⁺/Si₂H₅, and a weak onset at 9.40 eV for $Si₂H₂⁺/Si₂H₄$. The observed AE(Si₂H₃⁺) is supported by the G4 thermodynamic limit of 9.247 eV for $[H_2Si(H)Si]^+$ + H_2 , while the weak tail at 8.74 eV is likely for $[Si(H)_3Si]^+/Si_2H_5$ (AE = 8.729 eV by G4). Note that the barrier from $[H_3SiSiH_2]^+$ to $[H_2SiSiH]^+$ - H_2 is below $[H_2Si(H)Si]^+$ + H_2 . The observed $AE(Si_2H_2^+/Si_2H_4)$ is comparable to the G4 AEs of 9.636 and 9.697 eV for $[H_2SiSi]^+$ and $[HSi(H)Si]^+$ + H_2 from H_2SiSiH_2 , albeit a transition state from $[H_2SiSiH_2]^+$ to $[H_2SiSi]^+$ exists at a slightly high position of 9.741 eV, while the weak tail at 9.40 eV is probably due to $[Si(H)_2Si]^+$ from H_2SiSiH_2 (AE = 9.336 eV by G4) [\(Table](#page-3-0) 2).

No previous study is available on the dissociative photoionization of Ge_2H_6 or SiGeH₆. The G4 relative energies and potential energy diagrams are present here for future reference [\(Tables](#page-6-0) S4 and S5 and Figs. S6 and S7). The potential energy diagram for $\text{Ge}_{2}\text{H}_{6}^{+}$ indicates that the onsets for $\text{[H}_{2}\text{GeGeH}_{2}\text{]}^{+}$ and

Fig. 2. Optimized geometries of transition states for H₂-eliminations from $Si_2H_z^*$, $Ge_2H_z^*$, and $Si_2He_1^*$ ($z=4-6$) at levels of B3LYP and MP2 (in italics).

 $[H_3GeGeH]^+$ from Ge_2H_6 would correspond to the weak photoionization to $[H_2GeGeH_2]^+$ -H₂ and $[H_3GeGeH]^+$ -H₂, respectively, because the transition barriers from the $[H_3Ge-GeH_3]^+$ to both complexes and fragments are higher than the exit limits. The most likely route for $\text{Ge}_2\text{H}_3{}^+$ are $\text{Ge}_2\text{H}_6 \rightarrow \text{Ge}_2\text{H}_4{}^+ \rightarrow \text{Ge}_2\text{H}_3{}^+$, while the thermodynamic limits for $\text{Ge}_{2}\text{H}_{2}{}^{\text{*}}$ would likely be over-estimated in the photoionization study because the transition barriers from $[H₃GeGeH]⁺$ to $Ge₂H₂⁺$ are higher than $[H₂GeGe]⁺$ and $[HGe(H)Ge]⁺$ by 0.586 and 1.027 eV. Similarly, weak onsets are expected for $[H₂SiGeH₂]$ ⁺ and $[H₃SiGeH]$ ⁺ from SiGeH₆ because of the high transition barriers and large structural changes to $[H₂SiGeH₂]+H₂$ and $[H_3SiGeH]^+$ - H_2 , while appearance of $[H_3GeSiH]^+$ is expected to be clear because the transition barrier from $[H_3SiGeH_3]^+$ to $[H_3GeSiH]^+$ -H₂ is below the fragment $[H_3GeSiH]^+$ +H₂. Again the transition barrier from SiGeH₄⁺ to $[H_2SiGe]^+$, $[H_2GeSi]^+$, [HSi(H)Ge]⁺, and [HGe(H)Si]⁺ are above their thermodynamic limits by 0.469, 0.225, 0.774, and 0.770 eV, respectively, and their AEs might be overestimated.

Overall, the G4 results for the energetics of neutral $Si₂H_n$ and Ge_2H_n are in close agreements with the previous G2 and various intensive CCSDT/CBS predictions. The G4 ionization energies of $Si₂H_z$ and appearance energies of $Si₂H_z⁺$ from $Si₂H₆$ were compared

Fig. 3. The potential energy diagrams for $Si₂H₆⁺$ at G4//MP2 level (in eV).

with the experimental measurements by Ruscic and Berkowitz [\[52,53\],](#page-7-0) of which the G4 IE_as are in good agreement with the experimental values, while the agreements in AEs between G4 and the experimental values are less pronounced because of the transition barriers for the fragmentation processes. The high barriers impose experimental difficulty in determining the energetics of $Si₂H₂⁺$, $\rm{Ge_2H_2^+}$, and SiGeH $_2^+$ using the measured AEs because of the kinetic shift and small Franck-Condon factors at the dissociation and ionization thresholds.

Acknowledgments

L.W.thanks for the service of SCUTGrid provided by Information Network Research and Engineering Center of South China University of Technology and financial support from National Science Foundation of China (No. 20777017) and the Fundamental Research Fund for the Central Universities of China (2009ZM0176). J.Z. thanks the financial support from US National Science Foundation (CHE-0848643).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.ijms.2011.12.005.](http://dx.doi.org/10.1016/j.ijms.2011.12.005)

References

- [1] I. Ouellette, Ind. Phys. (2002) 22 (June/July).
- [2] M. Isomura, K. Nakahata, M. Shima, S. Taira, K. Wakisaka, M. Tanaka, S. Kiyama, Solar Energy Mater. Solar Cell. 74 (2002) 519.
- [3] S. Miyazaki, H. Takahashi, H. Yamashita, M. Narasaki, M. Hirose, J. Non-Cryst. Solids 299–302 (2002) 148.
- [4] G. Isella, D. Chrastina, B. Rossner, T. Hackbarth, H.-J. Herzog, U. Konig, H. von Kanel, Solid-State Electron. 48 (2004) 1317.
- [5] E. Lopez, S. Chiussi, J. Serra, P. Gonzalez, C. Serra, U. Kosch, B. Leon, F. Fabbri, L. Fornarini, S. Martelli, Appl. Surf. Sci. 234 (2004) 422.
- [6] J.J. Zhang, K. Shimizu, J. Hanna, J. Non-Cryst. Solids 299–302 (2002) 163.
- [7] J. Olivares, J. Sangrador, A. Rodrihuez, T. Rodriguez, J. Electrochem. Soc. 148 (2001) C685.
- [8] C.J. Ritter, C.-W. Hu, A.V.G. Chizmeshya, J. Tolle, D. Klewer, I.S.T. Tsong, J. Kouvetakis, J. Am. Chem. Soc. 127 (2005) 9855.
- [9] S. Sivaram, Chemical Vapor Deposition: Thermal and Plasma Deposition of Electronic Materials, International Thomson Publishing Inc., New York, 1995.
- [10] S.R. Gunn, J.H. Kindsvater, J. Phys. Chem. 70 (1966) 1750.
- [11] F.E. Saalfeld, H.J. Svec, J. Phys. Chem. 70 (1966) 1753.
- [12] J. Drowart, G.D. Maria, A.J.H. Boerboom, M.G. Inghram, J. Chem. Phys. 30 (1959) 308.
- [13] R. Viswanathan, R.W. Schmude, K.A. Gingerich Jr., J. Chem. Thermodyn. 27 (1995) 763.
- [14] J. Andzelm, N. Russo, D.R. Salahub, J. Chem. Phys. 87 (1987) 6562.
- [15] S.-D. Li, Z.-G. Zhao, X.-F. Zhao, H.-S. Wu, Z.-H. Jin, Phys. Rev. B 64 (2001) 195312.
- [16] L. Sari, Y. Yamaguchi, H.F. Schaefer, J. Chem. Phys. 119 (2003) 8266.
- [17] P. Wielgus, S. Roszak, D. Majumdar, J. Saloni, J. Leszczynski, J. Chem. Phys. 128 (2008) 144305.
- [18] C. Weng, J. Kouvetakis, A.V.G. Chizmeshya, J. Comput. Chem. 32 (2011) 835.
- [19] P. Ho, M.E. Coltrin, J.S. Binkley, C.F. Melius, J. Phys. Chem. 90 (1986) 3399.
- [20] A.F. Sax, J. Kalcher, J. Phys. Chem. 95 (1991) 1768.
- [21] L.A. Curtiss, K. Raghavachari, P.W. Deutsch, J.A. Pople, J. Chem. Phys. 95 (1991)
- 2433.
- [22] G. Katzer, M.C. Ernst, A.F. Sax, J. Kalcher, J. Phys. Chem. A 101 (1997) 3942.
- [23] M.T. Swihart, S.L. Girshick, J. Phys. Chem. B 103 (1999) 64.
- [24] H.-W. Wong, J.C.A. Nieto, M.T. Swihart, L.J. Broadbelt, J. Phys. Chem. A 108 (2004) 874.
- [25] A. Ricca, C.W. Bauschlicher Jr., J. Phys. Chem. A 103 (1999) 11121.
- [26] R.S. Grev, H.F. Schaefer, K.M. Baines III, J. Am. Chem. Soc. 112 (1990) 9458.
- [27] T.L. Windus, M.S. Gordon, J. Am. Chem. Soc. 114 (1992) 9559.
- [28] R.S. Grev, H.F. Schaefer III, Organometallics 11 (1992) 3489.
- [29] H. Jacobson, T. Ziegler, J. Am. Chem. Soc. 116 (1994) 3667.
- [30] A.J. Boone, D.H. Magers, J. Leszczynski, Int. J. Quantum Chem. 70 (1998) 925.
- [31] J.M. Galbraith, H.F. Schaefer III, J. Mol. Struct. (Theochem) 424 (1998) 7.
- [32] L. Sari, M.C. McCarthy, H.F. Schaefer III, P. Thaddeus, J. Am. Chem. Soc. 125 (2003) 11409.
- [33] R.S. Grev, H.F. Schaefer III, J. Chem. Phys. 97 (1992) 7990.
- [34] C. Liang, L.C. Allen, J. Am. Chem. Soc. 112 (1990) 1039.
- [35] G. Trinquier, J.P. Malrieu, J. Am. Chem. Soc. 109 (1987) 5303.
- [36] Y. Yamaguchi, B.H. DeLeeuw, C.A. Richards, H.F. Schaefer Jr., G. Frenking III, J. Am. Chem. Soc. 116 (1994) 11922.
- [37] G. Trinquier, J.-P. Malrieu, P. Riviere, J. Am. Chem. Soc. 104 (1982) 4529.
- [38] S. Nagase, T. Kudo, Theochem 12 (1983) 35.
- [39] R.S. Grev, B.J. Deleeuw, H.F. Schaefer III, Chem. Phys. Lett. 165 (1990) 257.
- [40] G. Trinquier, J. Am. Chem. Soc. 112 (1990) 2130.
- [41] Z. Palagyi, H.F. Schaefer, E. Kapuy III, J. Am. Chem. Soc. 115 (1993) 6901.
- [42] H.-J. Himmel, H. Schnockel, Chem. Eur. J. 8 (2002) 2397.
- [43] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.Voth, P. Salvador, J.J. Dannenberg,V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Wallingford, CT, 2004.
- [44] B. Chan, J. Deng, L. Radom, J. Chem. Theory Comput. 7 (2011) 112.
- [45] J.P. Merrick, D. Moran, L. Radom, J. Phys. Chem. A 111 (2007) 11683.
- [46] L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 126 (2007) 084108.
- [47] H. Oberhammer, T. Lobreyer, W. Sundermeyer, J. Mol. Struct. 323 (1994) 125.
- [48] G. Dolgonos, Chem. Phys. Lett. 454 (2008) 190.
- [49] G. Dolgonos, Chem. Phys. Lett. 466 (2008) 11.
- [50] D. Sillars, C.J. Bennett, Y. Osamura, R.I. Kaiser, Chem. Phys. Lett. 392 (2004) 541. [51] E. Aprà, T.L. Windus, T.P. Straatsma, E.J. Bylaska, W.A. de Jong, S. Hirata, M. Valiev, M. Hackler, L. Pollack, K. Kowalski, R. Harrison, M. Dupuis, D.M.A. Smith, J. Nieplocha, V. Tipparaju, M. Krishnan, A.A. Auer, E. Brown, G. Cisneros, G.I. Fann, H. Fruchtl, J. Garza, K. Hirao, R. Kendall, J.A. Nichols, K. Tsemekhman, K. Wolinski, J. Anchell, D. Bernholdt, P. Borowski, T. Clark, D. Clerc, H. Dachsel, M. Deegan, K. Dyall, D. Elwood, E. Glendening, M. Gutowski, A. Hess, J. Jaffe, B. Johnson, J. Ju, R. Kobayashi, R. Kutteh, Z. Lin, R. Littlefield, X. Long, B. Meng, T. Nakajima, S. Niu, M. Rosing, G. Sandrone, M. Stave, H. Taylor, G. Thomas,

J. Van Lenthe, A. Wong, Z. Zhang, NWChem, A Computational Chemistry Package for Parallel Computers, Version 4.7, Pacific Northwest National Laboratory, Richland, WA 99352-0999, USA, 2005.

- [52] B. Ruscic, J. Berkowitz, J. Chem. Phys. 95 (1991) 2416.
- [53] B. Ruscic, J. Berkowitz, J. Chem. Phys. 95 (1991) 2407.
- [54] L.T. Ueno, L.R. Marim, A.T. Dal Pino, F.B.C. Machado, Int. J. Quantum Chem. 106 (2006) 2677.
- [55] P.W. Deutsch, L.A. Curtiss, J.P. Blaudeau, Chem. Phys. Lett. 270 (1997) 413.
- [56] K. Fuke, S. Yoshida, Eur. Phys. J. D 9 (1999) 123.
- [57] S.-D. Li, Z.-G. Zhao, H.-S. Wu, Z.-H. Jin, J. Chem. Phys. 115 (2001) 9255.
- [58] I. Shim, M. Sai Baba, K.A. Gingerich, Chem. Phys. 277 (2002) 9.
- [59] A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88 (1988) 899.
- [60] J. Berkowitz, G.B. Ellison, D. Gutman, J. Phys. Chem. 98 (1994) 2744.
- [61] A. Marijnissen, J.J. ter Meulen, Chem. Phys. Lett. 263 (1996) 803.
- [62] D.A. Dixon, D. Feller, K.A. Peterson, J.L. Gole, J. Phys. Chem. A 104 (2000) 2326.